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The forced convective flow of an ideal gas through a packed bed was investigated 
by finite-difference numerical means. Oscillating gas-phase temperature/pressure inlet 
boundary conditions were considered. The effect of oscillating boundary conditions on 
the transport phenomena in the packed bed was investigated and comparisons were made 
with the case of constant-temperature and constant-pressure boundary conditions. The 
average energy storage characteristics were found to be very close in both oscillating and 
constant inlet boundary conditions. 
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I n t r o d u c t i o n  

In storage of thermal energy in packed beds, the dynamic 
behavior of the packed-bed system is an important consider- 
ation. Ideal conditions of constant-temperature and constant- 
pressure inlet conditions are quite difficult to maintain. Therefore, 
examining those conditions that more closely approximate 
the real-life situations, such as variable-pressure or variable- 
temperature inlet conditions, provides better insight to such 
problems. 

Packed beds have been widely used in engineering for heat 
and mass transfer applications and for energy storage purposes. 
The principles that are used to study transport phenomena in 
packed beds are the same as those used for porous media in 
general. The related applications are very common in chemical 
engineering processes as well as petroleum, geothermal, and 
nuclear engineering processes. Related mechanical engineering 
applications mostly deal with thermal energy storage systems. 

Extensive literature is available on the applications of packed 
beds and porous media. The majority of these investigations 
deal with incompressible flows through packed beds or other 
forms of porous materials. The simplest model used for analysis 
of transport phenomena in porous media is the so-called 
one-phase model, in which the porous medium and the working 
fluid are approximated as a quasi-homogeneous medium with 
properly defined effective transport coefficients. The basis of 
the two-phase model, in which the assumption of local thermal 
equilibrium between the fluid and solid phases is not used, is 
the Schumann 1 model. Riaz z reported a comparison between 
the single- and two-phase model solutions. Because of the 
incompressible flow assumption and neglect of boundary effects, 
these models naturally involve only energy equations. A number 
of simplifications such as neglecting axial conduction terms 
have been employed in most of the investigations dealing with 
two-phase models. Spiga and Spiga 3 reported an investigation 
in which different boundary conditions were considered. 

The majority of the investigations dealing with compressible 
flow through packed beds or other porous media concentrate on 
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ideal-gas behavior, and employ the assumption of local thermal 
equilibrium between the solid and fluid phases. Analytical 
solutions for simplified cases have been reported by Kidder 4 
for isothermal flow of an ideal gas through a porous medium, 
and by Morrison 5 for isothermal and adiabatic flows of an 
ideal gas through a porous medium. These studies do not take 
into account the inertia effects, and they utilize the local thermal 
equilibrium (LTE) assumption, i.e., the one-phase model. 
Another study that incorporates the LTE assumption but 
accounts for the inertia effects was reported by Nilson. 6 

In establishing the condition of no local thermal equilibrium 
between the solid and fluid phases, energy equations are 
developed by the use of a heat transfer term in each, representing 
the interphase heat transfer formulated by the use of the 
fluid-to-particle heat transfer coefficient. Extensive studies have 
been conducted for establishing empirical correlations for the 
fluid-to-particle heat transfer coefficients for packed beds of 
different geometry, packing configuration, and particle size, and 
related literature surveys are also available. 7's 

Rigorous models have been developed by Vafai and SSzen 9 
and S6zen and Vafai 1° for the forced convective flow of a 
superheated ideal gas and forced convective condensing flow 
of a vapor through a packed bed. The former of these studies 
concentrated on the parameters influencing the LTE and 
two-dimensionality of the transport phenomena, while the latter 
concentrates on the condensing flows through a packed bed. 
The LTE assumption has not been used in any of these studies, 
and inertia effects have been accounted for by the use of 
the Ergun-Forchheimer relation rather than Darcy flow 
formulation. 

In the present study, compressible flow of an ideal gas 
through a packed bed is investigated for oscillating inlet- 
pressure and oscillating inlet-temperature boundary conditions 
in accordance with the fact stated earlier that such boundary 
conditions represent more closely the real-life conditions for 
certain situations. For example, in real applications, more often 
than not, some form of oscillation prevails in the inlet pressure 
or temperature. It is then crucial to know the qualitative and 
quantitative effects of the oscillations on the thermal charging 
characteristics and the net energy storage capabilities of the 
packed bed. Our aim is to analyze the behavior of the transport 
processes and energy storage characteristics in these oscillating 
boundary condition flows through porous media with specific 
attention on packed beds. 
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Problem statement  and formulat ion 

A rectangular packed bed is assumed to be formed by regularly 
shaped and sized spheres packed between two horizontal walls. 
The schematic diagram of the physical system under consider- 
ation is depicted in Figure 1. Relatively high-speed flows are 
considered in the present study and, therefore, the flow is 
essentially forced convective in nature. In the present study, 
the top and bottom walls are assumed to be insulated and the 
depth to be infinitely long, thus rendering the problem essentially 
one-dimensional (l-D). The working fluid was taken to be 
superheated Refrigerant-12, which was modeled as an ideal gas, 
while the material of the packed-bed particles was chosen to 
be 1% carbon-steel. The governing equations following ref. 9 
are given as follows: 

(~(P~) ) Ox((P°)"(u°))=° (1) 

Ox ~ (u~) 2-7_ (uv) (2) 
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These equations represent the gas-phase continuity equation, 
gas-phase momentum equation, gas-phase energy equation, 
solid-phase energy equation, and the equation of state for the 
working fluid, respectively, where the unknown variables solved 
from these equations are, respectively, (pv)~, (u~), (T~) ~, 
(T~) s, and (P~)~. 

Modeling of several geometric parameters and effective 
thermophysical properties have been based on previous investi- 
gations. The permeability of the packed bed, Ko, and the 
geometric function F appearing in the gas-phase momentum 
equation were modeled as follows, based on the works of 
Ergun 11 and Vafai: 12 

Kv - eadP2 (6) 
150(1 - e )  2 

1.75 
f = - -  (7) 

IN//~0g 3/2 

The surface area of the particles per unit volume of the packed 
bed was formulated as '3 

6(I -e) 
a,o- (8) 

dp 

The particle diameter was taken to be 2 ram. Fol lowing the 
experimental findings of Benanati and Brosilow, t* the average 
value of the porosity of the packed bed was taken to be 0.39. 

Modeling of the problem was completed by formulating the 
effective thermal conductivities and the fluid-to-particle heat 
transfer coefficient. The former ones were established as 

k v e f f  = ~kv (9) 

kscff = (1 -e)k s 
and the latter one was obtained from the work of Gamson 
et a l :  5 in the following form: 

/c 0\-2/3{d G\  -0'41 
hsv= 1.064%G~) ~Z~_) for dvG>l~ 350 (10' 

Considering the size of the particles of the packed bed and the 
range of particle Reynolds numbers employed in the present 
investigation, the above correlation was found to be the most 

N o t a t i o n  
A Amplitude of the pressure variation, kPa 
asv Specific surface area of the bed particles, m2/m 3 
B Amplitude of the temperature variation, K 
cp Specific heat at constant pressure, J /kg-K 
dp Particle diameter, m 
f Frequency of oscillation, Hz 
F Geometric factor defined in Equation 2 
G pu, mass flux, kg,/m 2. s 
hsv Fluid-to-particle heat transfer coefficient, W/m 2. K 
H Height of the packed bed, m 
k Thermal conductivity, W/m. K 
K Permeability, m 2 
L Length of the packed bed, m 
P Pressure, N/m 2 
R Gas constant for Refrigerant-12, J/kg. K 
R% Particle Reynolds number 
t Time, s 
T Temperature, K 
u Velocity component in x-direction, m/s 

Greek letters 
e Porosity 
p Absolute viscosity, kg/m. s 
p Density, kg/m ~ 

Subscripts 
av Average inlet 
o Initial 
s Solid 
v Gas 
serf Effective property for solid 
veff Effective property for vapor 

Superscripts 
s Solid 
v Gas 

Symbols 
( ) "Local volume average" of a quantity 
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appropriate one to use. Moreover, it compared reasonably well 
with the most recent correlations for the fluid-to-particle heat 
transfer coefficient. 

The initial conditions employed in the solution of the problem 
were 

ev(x, t = O) = Po 

To(x , t=O)=T~(x, t=O)=  T o (11) 

uv(x, t = O) = 0 

with corresponding values of Pv being computed from Equa- 
tion 5. 

The boundary conditions used for the case with oscillating 
inlet gas pressure can be mathematically expressed as 

e~(x = 0, t)=P=v+A cos(2nft) 

Po(x=L, t )=eo  (12) 

Tv(x = 0, t ) =  Tv= v 

where f is the frequency and A is the amplitude of the 
cosinusoidal variation of the inlet pressure, and again the 
corresponding Pv values are computed from Equation 5. 

The boundary conditions employed for the case with the 
oscillating gas-phase inlet temperature condition can similarly 
be expressed as 

P~(x =0, t)=Pav 

P~(x=L, t )=Po (13) 

Tv(x = 0, t )= Tv,v+B cos(2nft) 

where f is the frequency and B is the amplitude of the variation 
of the inlet gas temperature, pv is computed as in previous cases. 
The boundary conditions for the case with constant temperature 
and constant pressure at the inlet are similar to those in 
Equation 12 with A being equal to zero. 

In the case studies performed, the following values have been 
used for the variables: 

Po = 100 kPa 

P,~ = 104 kPa 

To = 300 K 

Tray= 350 K 

The nominal particle Reynolds number for the average inlet 
pressure and temperature was 745. The other thermophysical 
properties used in the case studies were as follows: 

Refrigerant-12 
cp= 710 J/kg. K 

k = 0.0097 W/m- K 

/~= 12.6 x 10 -6 kg/m-s 

R = 68.7588 J/kg. K 

1% Carbon-steel 
cp = 473 J/kg. K 

k=43 W/m.K 

p = 7800 kg/m 3 

Solution method 

Equations 1 to 5 were solved by using an explicit-scheme 
finite-difference method. The temporal derivative terms were 
approximated by forward Euler differencing while most of the 
spatial derivative terms were approximated by central differ- 
encing for all the inner grid points. An exception to the latter 

approximation was the use of forward differencing in approxi- 
mating the pressure gradient term in the gas-phase momentum 
equation. This was done to ensure the stability of the numerical 
solution for the early stage of the problem. Another exception 
was the use of first-order upwind differencing in the convective 
terms of the gas-phase continuity and energy equations. How- 
ever, central differencing could also be used in the convective 
term of the gas-phase continuity equation. Forward and 
backward differencing were employed for the spatial derivative 
terms for the left and right boundary grid points, respectively. 

The common procedure of ensuring the stability and accuracy 
of the explicit schemes by choosing a proper combination of 
Ax and At was utilized in this work. This was done by 
systematically decreasing the grid size and selecting At in such 
a way to ensure convergent solution. The grid size was decreased 
until the difference between the solution obtained by the chosen 
grid size and that obtained by decreasing the grid size by half 
did not exceed 1%. A 41 x 1 grid configuration was found to 
satisfy this criterion. Therefore, 41 grid points were used in the 
x-direction. 

A similar numerical code has been used by the authors in 
their previous investigations, and the analytical solutions for 
two simplified cases of transport phenomena in porous media 
as given by refs. 2 and 4 were compared against the solutions 
obtained by their code.  9 Ref. 2 presented an analytical solution 
for an incompressible flow through a porous medium, while 
ref. 4 presented an analytical solution for isothermal flow of a 
gas through a porous medium. The agreement between the 
numerical solutions and the analytical ones was excellent. 

Results and discussions 

In order to explore any differences in the transport phenomena 
and energy storage characteristics of the packed bed with 
oscillating-flow boundary conditions from those of constant 
boundary conditions, we considered these cases for different 
ranges by using different values for parameters A, f ,  and B in 
Equations 12 and 13 in different runs. 

In their previous investigations the authors have observed 
that for constant-temperature and constant-pressure boundary 
conditions at the inlet, the solution of the problem had two 
distinct stages9'l°--namely, the early stage during which the 
pressure evolution in the packed bed takes place very rapidly, 
causing drastic variation in the other field variables, and the 
later stage in which the change in the field variables are 
mostly temperature dependent. The distribution of different 
field variables along the packed bed during the early stage are 
depicted in Figure 2 for the case with constant inlet temperature 
and pressure. In this figure the gas-phase density was non- 
dimensionalized with respect to an average density value 
calculated from the equation of state using average values of 
gas-phase pressure and temperature, i.e., average of the initial 
and inlet conditions. Likewise, the nominal value of the velocity 
used for nondimensionalizing the gas-phase velocity was com- 
puted from Equation 2 based on the average density and the 
average pressure gradient along the packed bed. These character- 
istics have been discussed in detail in refs. 9 and 10. Similar 
characteristics were observed in the present work, with the 
exception that in the case of the oscillating inlet-pressure 
condition, the pressure distribution within the packed bed was 
not very closely linear as it was in the other cases. Rather, it 
showed an oscillating behavior along the packed bed. 

First, temperature variation of the solid and fluid phases 
within the packed bed with respect to time was considered. 
Figure 3 depicts this variation for the ease with constant- 
temperature and constant-pressure inlet boundary conditions. 
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For convenience, this case will be called Case I. Figure 4 
shows the temperature variations for constant temperature and 
oscillating pressure at the inlet of the packed bed. This case will 
be called Case II. For Case II, the chosen parameters were 
A = 2 kPa and f =  0.05 Hz. For Case III, which is for constant- 
pressure but oscillating-temperature inlet boundary conditions, 
the temperature variations are shown in Figure 5. For this case 
we had B = 2 5  K and f = 0 . 0 5  Hz. Qualitatively, Figures 3 and 4 
depict similar behavior for the solid- and fluid-phase temper- 
ature variations with larger temperature difference between the 
two phases at the beginning, and narrowing difference as the 
thermal front moves within the packed bed. This behavior is 
also valid for Case III in the downstream section of the packed 
bed but not at the entrance region because of the oscillating 
temperature inlet condition. At the entrance region, the temper- 
ature difference between the solid and fluid phases can increase 
or decrease due to the oscillating inlet fluid temperature and due 
to the fact that there will be a lag time for the response of the 
solid-phase temperature to this oscillation. 

Figure 6 depicts the variation of the gas-phase density, 
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pressure, and velocity at four different time levels for three 
different cases for Case II during one complete cycle of the 
pressure oscillation. These three cases involved different values 
for parameters A and f as shown in Figure 6. Cases in Figure 
6a and 6h have the same amplitude but different frequency of 
inlet pressure oscillation, whereas cases in Figure 6b and 0c 
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Figure 6 Variation of field variables during the first complete 
pressure cycle 

have the same frequency but different amplitudes of inlet 
pressure oscillation. In each case the four time levels depicted 
were chosen so that they would span over one complete cycle 
of oscillation (the very first cycle in the process). Although the 
pressure distribution is nearly linear along the packed bed 
during the first three time levels, a careful examination of the 
figures at the fourth time level reveals that the pressure 
distribution in the packed bed picks up from the oscillating 
inlet condition and shows an oscillating behavior along the 
packed bed too, i.e., spatial oscillation in addition to temporal 
oscillation. Also, as can be expected, the range of variation of 
the gas-phase velocity is higher in the case with larger amplitude 
in the inlet pressure oscillation. The comparison of the range 
of velocity variation in Figure 6c with those in Figure 6a and 6b 
reveals this clearly. The variation in the gas-phase density can 
be explained by the use of the equation of state and the variation 
of the pressure and temperature along the packed bed. At the 
entrance region, the sharp decrease in the temperature at the 
beginning of the charging process requires an increase in the 
gas-phase density, since the rate of decrease in gas-phase 
pressure is less pronounced than that in temperature. 

Figure 7 depicts the time history of the net energy storage 
per unit width of the packed bed for Case I and two cases of 
Case II. As expected, the asymptotic value of the total net 
energy stored in each case is the same. As the amplitude of the 
oscillations in the inlet pressure increases, the oscillations in 
the net energy stored become more pronounced, since the 
oscillations in effect result in oscillations in the mass flow rate of 
the gas phase through the packed bed. Larger frequencies, on 
the other hand, tend to smooth the variation in the net energy 
storage. 

The variations in the rate of heat flow into and out of the 
packed bed for Case I and Case II with A = 2 kPa and f =  
0.05 Hz are depicted in Figure 8. The oscillating behavior in 
this figure is that of Case II and the smooth variation is that 
of Case I. Although the heat flow rates into and out of the 
packed bed oscillate in Case II due to the oscillation in the 
inlet pressure and hence the mass flow rate, the average 
variation of each of these quantities is qualitatively very similar 
to those of Case I, i.e., the variation of the difference between 

the heat flowing into and out of the packed bed has the same 
trend in both cases. 

The comparison of the rate of heat flow into and out of the 
packed bed for Case I and Case III is shown in Figure 9. For 
Case III  in this figure, B =  25 K and f=0 .05  Hz. Again, due to 
the oscillating inlet temperature, the density and velocity of the 
gas and hence the mass flow rate into the packed bed oscillates. 
However, this oscillation in temperature has a less pronounced 
effect on the heat flow rates into and out of the packed bed 
than the oscillation in the inlet pressure has, as shown in Figure 
8. The difference between the scales of Figures 8 and 9 should 
be noted. Part of the reason for this behavior may be attributed 
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to the fact that, in calculating the gas-phase velocity, the 
pressure gradient term in the gas-phase momentum equation 
is much more dominant than the inertia term, which involves 
the gas-phase density, which in turn varies in proportion to the 
temperature. Thus the former affects the variation in the 
gas-phase velocity more, causing a more pronounced oscillation 
in the mass flow rate of the gas phase. 

In Case Ill we cannot talk about the complete thermal 
charging of the packed bed due to the oscillating inlet- 
temperature boundary condition. Because at the entrance 
region of the packed bed, due to this oscillation, the solid 
temperature also oscillates (not necessarily at the same frequency 
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and amplitude, because the heat capacity of the solid phase is 
much larger than that of the working fluid, and therefore the 
temperature of the solid phase cannot follow the temperature 
of the incoming gas at the same frequency and amplitude). Yet, 
one can speak ofa pseudoeharging of the packed bed. Figure 10 
depicts this pseudoeharging behavior (representing the net 
energy stored within the packed bed). This behavior is different 
from that of Case II, where although the gas-phase inlet pressure 
is oscillating, the gas-phase inlet temperature is kept constant 
at the highest value that can be attained by the packed-bed 
particles; consequently, there is continuous thermal energy 
storage within the packed bed until the packed bed is thermally 
fully charged. However, in Case III, due to the variation of the 
solid temperature in the entrance region, there is alternating 
energy storage and removal from the packed bed. 

In order to find out whether the qualitative behavior of the 
energy storage characteristics changes with particle Reynolds 
number (R%), cases with different nominal R% were investi- 
gated. Higher-particle Reynolds numbers were obtained by 
increasing the mean inlet pressure. The results are depicted in 
Figure 11 for three different cases in which the amplitude of 
the inlet pressure oscillations was the same. As can be seen, the 
qualitative behavior is similar in each case, although higher 
nominal Reynolds numbers, meaning higher mass flow rates, 
cause faster charging of the packed bed. The effect of the 
pressure oscillations is seen most clearly in the case with lowest 
R%, since the amplitude of the oscillations is largest relative 
to the global pressure difference applied across the packed bed 
for that case. 

Conclusions 

The dynamic response of sensible heat storage packed beds 
with oscillating inlet boundary conditions has been studied 
numerically for forced convective flow of a compressible fluid. 
A finite-difference scheme with uniform grid size was employed. 
It was found that the average energy storage behavior did not 
have major differences in the cases of constant or oscillating 
inlet boundary conditions, although the field variables showed 
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oscillating behavior in cases of oscillating boundary conditions. 
As expected, the variation of the energy storage was found to 
become smoother as the amplitude of the oscillation of the inlet 
condition decreased and/or as the frequency increased. It was 
also observed that, due to the nature of the governing equations, 
the response of the field variables was more sensitive to the 
amplitude of the fluid pressure variation than to that of the 
fluid temperature variation at the inlet of the packed bed. 
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